ROUND I: Similarity and Pythagorean relations

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Triangle ABC is a 30-60-90 triangle whose shortest side is 10 inches long. A similar triangle, FTP, has an area nine times as big as ABC. What is the length of the hypotenuse of triangle FTP?

2. A diagonal of a rectangle is 5 inches longer than 4 times the width of the rectangle. Find the length of the rectangle if it is 1 inch less than the length of the diagonal.

3. A sphere is inscribed in a right circular cone with base radius 5 and height 12. Find the radius of the sphere.

ANSWERS

1. (1 pt) in.

2. (2 pts) _____ in

3. (3 pts)

Bartlett, Leicester, St.John's

February 6, 2002

ROUND II: Algebra 1 - open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. A maple tree is less than 500 years old. An elm tree is 800 years older than the maple tree. A redwood tree is 1200 years older than the elm tree The sum of the ages of the three trees is 3700 years. How old is the maple tree?

2. Solve for x:
$$10x = \frac{(x+2)(x^2-9)}{x^2-x-6}$$
.

3. Several ordered pairs of positive integers (x,y) satisfy $x^2 - y^2 = 45$. Find the pair with the greatest sum.

1. (1 pt)			Years
2. (2 pts)	X =		
3. (3 pts)	()	

ANSWERS

Auburn, Leicester, West Boylston

ROUND III: Functions

NO CALCULATOR USE

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. If $Q(x) = x^2 + 3x + 1$ and P(x) = .0732, find P(Q(x)).

2. If
$$g(x) = 1 - x^2$$
 and $f(g(x)) = \frac{1 - x^2}{x^2}$ when $x \neq 0$, find the value of $f(\frac{1}{2})$.

3. The graphs of f and g are from linear segments joining lattice points. Draw the graph of y = f(g(x)).

ANSWERS 3. (3 pts) 1. (1 pt) 2. (2 pts)

Mass. Academy, South, Worcester Academy

February 6, 2002

I

ROUND IV: Combinatorics

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. In how many ways can you choose 5 books from a set of 14 distinct books? Order does not matter.

2. Duncan wants to buy 4 donuts from an ample supply of 3 types of donuts: glazed, chocolate, and powdered. How many different selections are possible? Order does not matter.

3. How many positive integers less than or equal to 4000 can be written down without using the digits 7, 8, or 9?

ANSWERS

- 1. (1 pt)
- 2. (2 pts)

3. (3 pts)

•

)

Algonquin, Burncoat, Northbridge

February 6, 2002

1

ROUND V: Analytic geometry

NO CALCULATOR USE

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Find the trisection point of the segment joining A(-6, 4) and B(12, -8) which is closer to B.

2. An ellipse has center at (3,4), a focus at (6,4), and a vertex at (10, 4). Write its equation in the form $\frac{(x-h)^2}{a^2 orb^2} + \frac{(y-k)^2}{b^2 ora^2} = 1$

3. Find the point(s) of intersection of the circle with center at (6, 10) and radius 4 with the asymptotes of the hyperbola with equation $x^2 - y^2 = 9$.

ANSWERS

1. (1 pt)	(,)	

2. (2 pts)

3. (3 pts)

Auburn, Quaboag, Shrewsbury

TEAM ROUND: Topics of previous rounds and open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM AND ON THE SEPARATE TEAM ROUND ANSWER SHEET 2 points each 2 points each

- 1. If $m \angle ACB = 90$, $\overline{CD} \perp \overline{AB}$, AD = 4, and $AC = 4\sqrt{17}$, find the area of $\triangle ABC$.
- 2. Determine the value of v z if: v + w = 20 w + x = 18 x + y = 16v + z = 14

- 3. If the ray shown is the graph of f(x), sketch the graph of $f^{-1}(x)+2$.
- 4. There are exactly 3 ways to add 4 odd numbers to get 10 Assume that re-arranging the order of the numbers does not give a new solution. How many ways are there of adding 8 odd numbers to get 20?
- 5. In an x-y coordinate system, the line through A(1, 4) and B(-5,0) is given a new onedimensional coordinate system with A having coordinate 0 and B having coordinate 1. What are the coordinates in the x-y system of the point in the new system with coordinate 2.5?
- 6. If x is an integer, graph the solution set of the inequality $(4 |x|)^2 \le 3$.
- 7. A rectangle has length L and width W. Find, in terms of L, W, and D, the increase in length required to keep the area unchanged when its width is decreased by D.
- 8. In a bag there is a regular triangle, a regular quadrilateral, a regular hexagon, and a regular octagon. The bag is opened and one angle is selected at random from the over 20 equally likely angles. What is the probability that the measure of that angle is a multiple of 45? Give your answer as a reduced fraction.
- 9. House numbering digits may be purchased at the rate of 5 digits for \$1.00 or 25 cents each. Pretend that you live on a very long street in a house numbered $(5^{73})(2^{80})$. What is the cheapest, in dollars and cents, for which your number when written out without exponents can be purchased?

Algonquin, Auburn, Bancroft, Bromfield, Hudson, Quaboag, Shrewsbury, Worcester Academy, QSC

-	February 6	, and iccomal Vare	ity Meet ANSVERS
ROUND I	1. l ɔt	60 in	"JAM ROUN) 2 ots each
sim Pythar	2. 2 nts	40 in	1. 544
	2 ° rta	10 or 3 3 or 3.3	
BOIND IT	1] nt.	300 yeurs	~. 4 2
ala l	2 0 ors	$x = \frac{1}{3} \text{or} .\overline{3}$	
	3),+a	(23,22)	3.
H		0020	
ROUND III	1. 1 nt	.0132	
r (x)	2, 2 nts	1	4. • *
		-2	5. (-14, -6)
	3 2 nta	-2	
ROUND IV	1. 1 nt	2((2	6 -5 -4 -3 3 4 5
comb	2. 2 ntg	15	7. <u>LD</u> or equivalent
	a ante	1372	4
ROUND V	<u>1</u> . ¹	(6,-4)	· 7
ى رۇرى	٥ د	$\frac{7x-3}{49} + \frac{7y-4}{40} = 1$	°. \$15.25
)) ^+g	(6,6) and (11,12)	

ROUND I ROUND III 1 Hypoten, FAARC - 2.10 - 20 1 Area ratio = $\frac{9}{1} = (s_1 de ratio)^2$ Side ratic 3 id hypot of GFTP 320 =60in 2 2 7 46+4 $W^{2} + (4w + 4)^{2} = (4w + 5)^{2}$ $u^2 - 2u - 4 = (u - q)(u - 1) = 0$ W=9 war length - 49+4 = 40 in 3. 3 Section along axis of cone fyth thm · 3 K \sim () s gets $\frac{12-r}{5} = \frac{r}{5}$ 60 - 5r = 13r $\frac{60}{18} = r - \frac{16}{3}$ ROUND II m = maple tree age 1 e = m + 800 $\Gamma = e + 1200 = m + 2000$ 3700 = 3m + 2200 > m = 300 yrs $10\chi = \frac{(\chi + 2)(\chi^2 - q)}{\chi^2 - \chi - 6} = \frac{(\chi + 2)(\chi + 3)}{(\chi + 2)(\chi - 3)}$ 2, $10x = x + 3 \Rightarrow x = \frac{1}{2}$ (x+y)(x-y)=45 Want biggest x+y 3. 15 · 3 > Take x+y = 45 45 · 1 - 7 - 7 = 1 = 46 2 x 7 = 23 1 = 22 Pair 15 (23, 22)

ı.

$\chi^2 + \hat{s} \chi + $ is intelevant
P(any numbe) - C'32
Since we want $f(\frac{1}{2})$, set $g(x) = \frac{1}{2}$.
$(-\chi^{2} - \tilde{2}) + \chi^{2} = \frac{1}{2}$
Then using $f(g(r)) = \frac{1-x^2}{y^2}$ yets
$f(\frac{1}{2}) = \frac{1 - \frac{1}{2}}{\frac{1}{2}} = 1$
x + g(x) + f(g(x))
-2 1 1 1 Use column -1 C O Land 3 Fer
C -1 1 answer
2 -2 -2
From g g : aph From f graph
Connect dots by line segments after thinking about in between X-Values

RULNI) IV

1. Straightformand combinations situation but with a nice answer $14C_5 = \binom{14}{5} = \frac{14}{5} \frac{13}{12} \frac{12}{11} \frac{10}{10} = 2002$

$$4,0,c$$
 $1.3,c$ $2,2,0$ $0,4,0$ $1,0,3$ $2,0,2$ $0,0,4$ $0,3,1$ $0,2,2$ $3,c,1$ $0,1,3$ $2,1,1$ $3,1,0$ $(,2,)$ $1,1,2$ 15 p-ssible

ROUND V Cont	TEAM ROUND cont
3 The numbers a possible digits in each position are multiplied 4777 = 1372 We subtract 1 because this counts C, but we add 1 + include 4000	2 $V + w = 20$ W + x = 18 V = -x = 2 Y + y = 16 V = -16 3 For $f^{-1}(x)$, 1 reflect the figraph across the line $y - x$ the resultion for $+2$, move the resultion for
ROUND ∇ $A(-c+)$	$\frac{1}{v} = \frac{1}{z} = \frac{1}{4}$
$ \begin{pmatrix} \gamma & dist = 1\hat{r} \\ Subtract = 1\hat{r} \\ f = m(2 + v), \\ \gamma & dist = 12 \\ Add' = \frac{1}{3} \cdot f(2, 4) + c + c + r - get - 4 \\ 2 \end{pmatrix} $	4 vial a a a $fin1$ $cleven$ wys 13 $wi71$ 55551, 3 $11, 61s$ 333,7,41s 7,7 $61s$ 3335,31s 2 $2 g$ 5 $1c$
$\frac{(x - 3)^{2}}{49} + \frac{(y - 4)^{2}}{40} = 1$ $3^{2} + l^{2} = 7^{2} (= cx^{2})$ $3^{2} + l^{2} = 7^{2} (= cx^{2})$ $3^{2} + l^{2} = 7^{2} (= cx^{2})$ $9 ets l^{2} = 4l$ $1 onge cixis is$ $her zental$	5 City City City City City City City City
3 Circle $(x-c)^2 + (y-10)^2 = 16$	$(-\sqrt{3} < 4 - x < \sqrt{3}$ -4-3<-1x < 4+ $\sqrt{3}$
Hyperbele asymptotes from $x^2 - y^2 = c$ $y = \pm x$	4+v3> 1×1>4-v3 or apprex 57>1×1>23 (n+eq: > v lue are I3 ±4 ±5
Picture show r 6h inte section of from j Kal. $(x-6)^2 + (x-10)^2 = 10$ $x^2 - 10x - 60$ (x-6)(x-10) = 0	7 $Lw = (L + \chi)(w - D)$ $u = (L + \chi)(w - D)$ $Lw - Lw + \chi w - LD = \chi D$ $w - D = \frac{L + \chi}{2}$ $\lambda - \frac{LD}{w - D}$
X C D X - C Intersection pts are (C, C) and (1010) TEDM DOWND	8 3 605, 4 90, 6 1205, and 8 13, 5 are available 12 of the 21
$\frac{1}{4} \frac{1}{\alpha} \frac{1}{4} \frac{1}{6} \frac{1}$	$\frac{12}{21} = \frac{4}{7}$ $9 5^{73} \ 2^{80} = 5^{73} \ 2^{73} \ 2^{7} \ 2^{7} = 10^{73} \ 2^{7}$ $Thi 128 \times 10^{73} 128 \times 10^{75} \text{ which has}$ $7L \ dig \ ts 7E - 5 - 15 \ 5 You \ Can$ $h_{y} \ 75 \ dig \ ts \ fa \ 1/5 \ and \ the \ extra \ che$ $for \ 25 \ 4 1/5 \ 25$